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The Gauss–Lorentz lineshape often observed in EPR or The classical Voigt function is the Fourier transform
NMR is shown to be simply related to the complex error func- of the product of a decreasing exponential by a Gaussian.
tion. Using numerical algorithms developed for the evaluation In high-resolution NMR, increasing exponential factors
of this function, experimental lineshapes can be accurately and are also encountered when the window function overcom-
rapidly simulated. Formulas are presented for the derivatives pensates for the signal decay. This produces negative
of the line profile with respect to the parameters and for the

lobes on either side of the line. These artifacts are oftenapproximate computation of the overall linewidth. It is ob-
tolerated, because the central part of the signal is quiteserved that accurate integrals require use of a wide integration
narrow and well resolved. This lineshape can also beinterval. q 1997 Academic Press

easily computed by using a generalization of the Voigt
function known as the plasma dispersion function (9 ) or
the complex error function (10 ) . This function providesINTRODUCTION
the added benefit that the imaginary part of the spectrum
can be computed with little additional effort. Ill-phasedThe Gauss–Lorentz lineshape is defined mathematically
lines can then be simulated by suitably combining realas the convolution product of Gaussian and Lorentzian func-
and imaginary parts.tions. It has a long history in magnetic resonance. Portis (1)

We will first make the connection between the NMRshowed that inhomogeneously broadened ESR lines had a
Gauss–Lorentz lineshape and the complex error function.Gauss–Lorentz profile. Many workers have presented meth-
We will then compare some experimental and computed lineods for deconvoluting ESR lines and recovering the physi-
profiles. We will show how the Voigt linewidth can be easilycally significant Lorentzian (spin-packet) width. For in-
estimated. We end with a caveat on the integrals of Gauss–stance, a computational procedure was described by Ramani
Lorentz lines.et al. (2) and by Korb and Maruani (3) . In the case of

Fourier transform NMR, the use of a window function con-
sisting of the product of an increasing exponential times a MATHEMATICAL DEVELOPMENT
decreasing Gaussian has been advocated by Ernst (4) and

We consider an NMR signal, (FID) s( t) , which can beby Ferridge and Lindon (5) . After Fourier transformation,
assumed without loss of generality to have zero frequencythe spectrum displays Gauss–Lorentz lineshapes. A graph
and unit initial amplitude,of the resulting empirical linewidth has recently been pre-

sented by Ogg et al. (6) .
The Gauss–Lorentz lineshape has an even older history s( t) Å 0, t õ 0,

in gas-phase atomic spectroscopy, where it is known as the
Å exp(0t /T2*) , t § 0, [1]Voigt profile (7) . It arises because the natural atomic line-

shape (a Lorentzian) is convoluted with a Gaussian due
to Doppler broadening. Simulations of stellar atmospheres where T*2 is the effective decay time of the FID. Its Fourier
require very accurate and fast computations of absorption transform is the spectrum S(n) :
coefficients. In response to that need, many properties of the
Voigt function have been studied and many algorithms have

S(n) Å 1

T*2

1

4p 2n 2 / (1/T*2 )2
0 2ipn

4p 2n 2 / (1/T*2 )2
.been developed for its evaluation (8) . It is the purpose of

this report to draw the attention of magnetic resonance spe-
cialists to this vast body of knowledge and to point to some
useful applications. The real part is a Lorentzian having full width 1/pT*2 at
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103APPROXIMATION TO THE GAUSS–LORENTZ LINESHAPE

FIG. 1. FFT of a synthetic FID (full line) and values [open squares, computed according to Ref. (11)] for a Gauss–Lorentz line: (a) real part; (b)
imaginary part. The natural width was taken as 2 Hz. The FID was multiplied by an increasing exponential (equivalent width 04 Hz) and a Gaussian
(width 2 Hz); 1024 complex points were used in the FFT, for a spectral width of 123 Hz.

half-maximum. It is interesting to note that the Fourier trans- cannot be expressed in terms of elementary functions; it is
given byform of a Gaussian signal

s( t) Å 0, t õ 0,
S(n) Å

√
p
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e0p2n2/a / i√
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√
a

0

es2
ds .

Å exp(0at 2) , t § 0
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FIG. 2. Experimental (full line) and computed (open squares) normalized lineshape of 1H2HO in 2H2O. The natural linewidth was 0.7 Hz, and the
FID was multiplied by an increasing exponential (equivalent width 00.03 Hz) and a Gaussian (width 2.4 Hz) before Fourier transformation and manual
phasing. The digital resolution was 0.22 Hz. The same filter parameters were used in the simulation.

The real part is a Gaussian with full width at half-maximum with any of the algorithms analyzed by Schreier (8) . We
have used the simple formulation of Hui et al. (11) . Theseof lG Å (2/p)

√
a ln 2. The imaginary part is known as

authors report a relative accuracy of better than 1004 overDawson’s integral (10, Chap. 7 ) . Let us now consider the
the entire x , y plane, which is quite sufficient for our pur-mixed Lorentz– Gauss case, which may be formulated as
poses. The corresponding PASCAL program is availablefollows. Before Fourier transformation, the FID, given
from the author.by Eq. [1] , is multiplied by an exponential exp (0t /T f ) ,

with l f Å 1 /pT f , and by a Gaussian, exp (0at 2 ) . We
introduce the parameter b Å 1 /T*2 / 1 /T f ; b can be of COMPARISON WITH THE NUMERICAL
either sign. The spectrum is now given by FOURIER TRANSFORM

We have synthesized FIDs of different decay times,S(n) Å *
`

0

e0at20bt02 ipntdt .
multiplied them by Lorentz–Gauss windows, and, using an
FFT program, obtained the corresponding spectra; the same

Using formula 7.4.2 of (10) , with c Å 0 and b Å b /2 / parameters were used in the Hui algorithm. In each case,
ipn, we obtain we obtained perfect agreement between the two methods:

an example of such a comparison is shown in Fig. 1. We
expect that the two methods give identical results as longS(n) Å 1

2

√
p

a
w Spn√

a
/ ib

2
√
a
D ,

as ( i) truncation and (ii) digitization effects can be ne-
glected; ( i) is not a serious limitation since, in most applica-
tions, the Gaussian function falls off rapidly at long times,

where w(x / iy) is the complex error function of a complex and (ii) can be minimized by zero filling.
argument which is defined as (10) The algorithm of Hui et al. comprises ten complex multi-

plications and one complex division per frequency point; it
is thus faster than the FFT if only a single line is to bew(z) Å e0z2

erfc(0iz) ; erfc(z) Å 2√
p

*
`

z

e0 t2
dt .

simulated. Schreier (8) provides a detailed but somewhat
inconclusive discussion of computation times for the case
of a multiline spectrum. We believe that the availabilityThe numerical computation of S or w is easily achieved
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FIG. 3. (Full line) The same FID as in Fig. 2 was multiplied by an increasing exponential (equivalent width 01.3 Hz) and a Gaussian (width 2
Hz) and Fourier transformed. (Open squares) Computed lineshape, using the same parameters and the algorithm of Hui et al. (11) .

of derivatives of the lineshape with respect to the window Å 14.2 s02) . It can be seen that the agreement between
experimental and computed spectra is satisfactory.parameters (see below) is an added advantage.

LINEWIDTHS
EXPERIMENTAL VERIFICATION

Since the purpose of the Lorentz–Gauss transformation
The resonance line of residual water in D2O was recorded is often resolution enhancement, the resultant linewidth is

in a 5 mm tube at 300.13 MHz, using quadrature detection of interest. For a positive b, one may use the experimental
with 4096 data points, for a spectral width of 900 Hz. The results of Ogg et al. (6) , but the very simple empirical
FID was zero-filled to 8K points, multiplied by a filter func- formula of Whiting (12) can also be used, with a reported
tion, Fourier transformed, and manually phased. The natural maximum error of 1.5% (13) . The full width at half-maxi-
linewidth of the unwindowed spectrum was found to be 0.7 mum of the Voigt profile is given in terms of the width of
Hz (T*2 Å 0.455 s) . The Bruker software defines the the Lorentzian component lL Å b /p and of the width of the
Gaussian function in terms of the abscissa on the time axis Gaussian lG Å (2/p)

√
a ln 2 by the following relation:

(defined as a fraction ‘‘GB’’ of the acquisition time ‘‘AQ’’)
where the window is maximum. The constant a is therefore lV Å (1/2)[lL / (l2

L / 4 l2
G)1/2 ] . [2]

For example, assuming that lL Å 2 Hz and lG Å 4 Hz, [2]a Å 1/(2rÉT fÉrGBrAQ).
gives lV Å 5.1 Hz, to be compared with a computed value
of 5.2 Hz and an experimental value of 5.3 Hz (6) . For the

The spectra were transferred to a desktop computer for com- line of Fig. 2, we measure 2.84 Hz, and formula [2] predicts
parison with computed lineshapes. Two representative ab- 2.78 Hz, a discrepancy much smaller than the digital resolu-
sorption spectra and their simulations are shown in Figs. 2 tion of 0.22 Hz.
and 3. For both, the acquisition time is 2.273 s. Figure 2
shows the case l f Å 00.03 Hz, so that b is positive (b Å DERIVATIVES AND INTEGRAL OF
2.105 s01) while the width due to the Gaussian filter is 2.4 THE VOIGT FUNCTION
Hz (GB Å 0.001, a Å 20.5 s02) . Figure 3 displays a spec-
trum for which l f Å 02 Hz; b is now negative (b Å 04.08 Nonlinear least-squares algorithms are frequently used to

retrieve line frequencies and intensities. Their implementa-s01) . The Gaussian filter broadening is 2 Hz (GB Å 0.1, a
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tion requires a knowledge of the derivatives of the lineshape A(x ,0) is then rigorously a Gaussian. The effect is more
significant the larger is y , so that, for quantitative work,with respect to the parameters. As the function w(z) satisfies

the simple differential equation small values of ÉyÉ Å ÉbÉ/2
√
a Å ( ln 2)1/2

ÉlLÉ/lG are pre-
ferred.

w *(z) Å 2i√
p
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